Using Python to Analyze Call Tracking Data

Import Libraries

Use Python libraries like Pandas for data handling, NumPy for numerical operations, and Matplotlib/Seaborn for visualization of call data.

Load the Data

Import call tracking data in formats like CSV or Excel using Pandas. Use pd.read_csv() or pd.read_excel() to load the dataset into a DataFrame.

Clean the Data

Handle missing or duplicate entries using dropna(), fillna(), and drop_duplicates(). Ensure consistent formatting for analysis.

Analyze Call Metrics

Calculate key metrics like call duration, frequency, peak times, and success rates. Use groupings (groupby) for detailed insights.

Visualize Trends

Create visualizations like bar charts, pie charts, or time series plots using Matplotlib or Seaborn to identify patterns in call behavior.

Generate Insights

Identify actionable insights, such as improving response rates during peak times or optimizing underperforming agents based on the data.